
Robust Single Layer Neural Network

Group 8 - CS777 Investigatory Project Report

Varun Khare
150714

Department of CSE
IIT Kanpur

varun@iitk.ac.in

Harshvardhan
150283

Department of EE
IIT Kanpur

harshv@iitk.ac.in

Abstract

This work aims to derive a non-trivial breakdown point for an algorithm for training a single hidden-
layer Neural Network. In pursuit of this goal, we propose two algorithms for training a network with
ReLU activations. The first approach utilizes the partitioning property of the ReLU function while
the second approach utilizes the convexity of the activation function.

1 Introduction

The topics for our Investigatory and Reading Project are the same.

Neural Networks have been observed to be robust to even adversarial corruptions. However, only a handful of theo-
retical results exist which guarantee robustness of NNs. We have made an attempt to address this, using results and
techniques from robust statistics.

To measure the robustness of an algorithm, we want to derive its breakdown point which is the largest number of
adversarially corrupted points an algorithm can handle and still guarantee recovery. The presence of breakdown point
results for simpler learners like linear regression was a primary motivation to pursue this project using robust statistics.

Although we were not able to achieve all our objectives, but we have analysed two approaches for NN training and
have implemented one of them. The rest of this report is structured in the following way : Section 2 contains a brief
overview of robustness guarantees of other regression techniques and convergence results for neural networks. Section
3 describes all the details of the exact problem statement which we have worked on with a subsection describing all
notations. Section 4 explains our two approaches. Section 5 describes the experiments we performed for our methods
while the next two sections deal with the challenges encountered and the possible extensions of our work.

2 Related Works

There has been considerable work in robust statistics and results for breakdown point exist for the cases of linear
regression[3][1]. Iterative Hard Thresholding algorithm proposes an AltOpt treatment of the problem by identifying

1



the corrupted samples and then solving the linear regression on the remaining samples. Works on robust logistic
regression like [4] change the loss function into a form more amenable to robustness analysis. These works deal with
corruption in the responses. Corruption in the covariates has been analysed in the work of [2] for the special case of
sparse regression. The authors define a new robust inner product to simplify their analyses.

3 Problem Statement

The problem statement formulated for this Investigatory project is to design and analyse a robust training algorithm
for a neural network. To simplify the problem, we consider the case of regression only single hidden layer neural
networks with ReLU activation on each node and an output node with no activation with squared loss function. The
corruptions are assumed to be present in the responses only and can be modeled by the following equation.

yj = h (xj , θ) + ηj , y ∈ R

Here h is the regressor representing the neural network and ηj represents the corruption for a noiseless training set.We
assume that the number of corruptions are unbounded in magnitude but are present in only a fraction of the training
dataset.

3.1 Notation

• Training points (x, y) ∈ D, y ∈ R,x ∈ Rd

• K hidden layer nodes.

• W = [w1,w2, . . . ,wK ],W ∈ Rd×K where each wi represents the weight vector from the input to the ith

node.

• v = [v1, v2, . . . , vk]
T ,v ∈ RK . Each vi represents the weight of the edge from the ith hidden node to the

output node.

• The predicted output for the neural network can be computed as -

ŷ =

K∑
i=1

vi ·max {〈wi,x〉 , 0}

• The loss function value is

L (x, y) =

(
K∑
i=1

vi ·max {〈wi,x〉 , 0} − y

)2

4 The Proposed Approaches

4.1 Approach 1 : ReLU Partitions

4.1.1 Partitions

This approach utilizes the prpoerty of ReLU to divide the space of the input Rd into 2 half-spaces, one where the
ReLU is active and the other where it is 0.

max {〈wi,x〉 , 0} =

{
〈wi,x〉 if 〈wi,x〉 > 0

0 〈wi,x〉 ≤ 0

Since 〈wi,x〉 = 0 represents a plane in Rd which divides the space into two half-subspaces. Each node can define a
different plane corresponding to it’s w. Now, to analyse the final output, considering no relation between number of

2



nodes K and input space dimension d, there can be a maximum of 2K regions. We can label each region according to
the nodes which are active in it. We will have one region having 0 nodes active and 1 region having all nodes active.

Our training algorithm for such a network becomes simple, first separate the training set into these regions and corre-
sponding to each region, learn a linear classifier. The robustness results for linear regression can be applied to make
this step robust. After obtaining the new weight vectors, we re-partition the training set.

This algorithm easily becomes intractable and ill-posed. Firstly, for accurate estimation of the linear classifier in
each partition, we require sufficient number of training points in that partition. Since there are 2K partitions and
these partitions are changing with each iteration, we cannot guarantee sufficient training points in each partition at
every iteration. This will make the problem ill-posed in partitions having scarcity of points. However, there is some
structure in this problem which we have not exploited. These partitions are created by only K weight vectors. This
promotes the idea of sharing information from datapoint-rich partitions to datapoint-poor partitions.

Suppose we have 2 nodes w1 and w2 then in the scenario when no points lie in the region where only one of them is
active, we will be able to estimate the complete term v1w1 + v2w2 and not its individual components. This is also
a defect of this partitioning approach. But, more importantly, it can be converted to a condition on the dataset which
for this 2 node case is , for every possible pair of w1,w2, there should be sufficient datapoints in atleast 2 regions
where atleast 1 node is active. Extending this to the K-node case gives us the condition of sufficient datapoints in
that many regions, whose linear combination can give us an estimate of each individual w. For the K-node case, the
minimum number of such regions is K. We have not delved deeper into obtaining a proper definition or analysis for
the above-mentioned condition. The precise details of the infer operation also need to worked out.

Since this algorithm tries to utilise the structure of the ReLU function, it is not applicable to networks having other
activation functions. Also, this algorithm will scale very poorly with increase in number of layers in the network.

Algorithm 1: ReLU Partition-based Training

Input: S = (xj , yj)
n
j=1 ,K

Output: W,v
1: W 0,v0 ← INIT,
2: for t = 1, 2, . . . , T do
3: S1, . . . , S2K ← {}
4: for i = 1, 2, . . . , n do
5: S∑K

j=1 I{〈wj ,x〉>0}2j−1 .append (xi)

6: end for
7: for r = 1, 2, . . . , 2K do

8: Wr = argmin
Wr∈Rd

∑
j∈Sr

(∑K
i=1 vi ·max {〈wi,xj〉 , 0} − y

)2
9: end for

10: W t,vt ← INFER (W1,W2, . . .W2K )
11: end for
12: return WT , sT

3



4.2 Approach 2 : Alternating Optimization

4.2.1 Method

L (X, y) =
n∑
j=1

(
K∑
i=1

vi ·max {〈wi,x〉 , 0} − y

)2

=

n∑
j=1

(
K∑
i=1

sign (vi) |vi| ·max {〈wi,x〉 , 0} − y

)2

=

n∑
j=1

(
K∑
i=1

sign (vi) ·max
{〈
|vi|2 wi,xj

〉
, 0
}
− yj

)2

=

n∑
j=1

(f (xj ,WP )− g (xj ,WN )− yj)2

where
f (xj ,WP ) =

∑
sign(vi)=1

·max
{〈
|vi|2 wi,xj

〉
, 0
}

and
g (x,WN ) =

∑
sign(vi)=−1

·max
(〈
|vi|2 wi,xj

〉
, 0
)

The vector of sign (vi) is denoted as sign (v). Thus, sign (v) ∈ {−1, 1}K . For a given value of sign (v), the
functions f and g are convex in WP and WN respectively (as max is always a convex function). Now, fixing both
sign (v) and WN (equivalent to fixing sign (v) and g (x,WN )), the loss function is square of a convex function
(f (x,WP )), thus it is convex.

n∑
j=1

(f (xj ,WP )− r)2

.(r is a constant)

Solving a convex optimization problem is simple and we can ensure convergence to the minima using Gradient-descent
style algorithms. Similarly, fixing sign (v) and WP , gives us another convex problem where ensuring convergence is
easy. Solving the convex optimization on f translates to updating WP while doing the same on g results in updating
WN . Since WP and WN consist of mutually exclusive hidden nodes’ weight vectors w so optimizing f and g is
equivalent to optimizing weight vectors of certain nodes. The complete W matrix has the weight vectors for each
node, thus optimizing f and g is same as performing block-of-coordinate-wise updates on the W matrix where the
coordinates represent weight vectors of different nodes. This perspective turns out to be of great use when proving
convergence for this algorithm.

Fixing f and g,
L (X,y) = ‖As− b‖22

,

where Aj,i = max
(〈
|vi|2 wi,xj

〉
, 0
)

and s = [sign (v1) , sign (v2) , . . . , sign (vK)]T ∈ {−1, 1}K ,b = y.

The loss function resembles the sparse recovery objective except the vectors s ∈ {−1, 1}K . To convert this to a sparse
format we perform the following computation.

s =
1

2
(p− 1)

4



p vector is K-sparse and its non-zero entries are always 1. Projection onto the vector space of p vectors(let it be C) is
also thresholding. For a vector s ∈ RK , to compute projection of s on C, we minimize

p = argmin
p∈C

‖s− p‖22

Solving this for each coordinate, (si − pi)
2 needs to be minimized where pi = 0, 1. This is minimized if si > 1

2 =⇒
pi = 1 else pi = 0. Thus, we get the projection rule onto set C.

Theorem 0.1. Projection of vector s on the set of binary vectors C ∈ RK is given by -

pi =

{
1 if si > 1

2

0 if si ≤ 1
2

∀i ∈ [K]

Since the Projection step is easy, we can solve this sparse-recovery problem using Projected Gradient Descent.

These update equations can be performed sequentially to obtain an Alternating Optimization algorithm for minimizing
the complete loss function. Moreover, each subproblem is easy to solve and can be shown to converge. The complete
algorithm is presented in Algorithm 2.

Algorithm 2: Alt-Opt-NN

Input: S = {(xj , yj)}nj=1 ,K
Output: W, , s

1: W 0, sT ← INIT,
2: for t = 1, 2, . . . , T do
3: W t

P = argmin
WP

∑n
j=1 (f (x,WP )− r)2

4: W t
N = argmin

WN

∑n
j=1 (g (x,WN )− r−)2

5: st = argmin
s∈{−1,1}K

‖As− b‖22
6: end for
7: return WT , sT

4.2.2 Analysis

Alternating algorithms can easily get stuck, so we will need to show non-zero decrease in the loss function value in
each iteration. We will assume complete minimisation of convex optimization problems with f and g and Projected
Gradient Descent for solving the sparse-recovery problem.

We will make the following assumptions to make analysis simple-

• The complete objective function h (W, s) = L (X,y) is β-smooth with respect to the Frobenius norm of W .
Thus,

h (W1, s) ≤ h (W0, s) + 〈∇Wh (W0, s),W1 −W0〉+
β

2
‖W1 −W0‖2F

• We add a regularizer with respect to s to the objective function to make it α-RSC over the set of binary vectors
C. Thus, h (W, s) = L (X,y) + α

2 ‖s‖
2
2

• To enable convergence in sparse recovery, we need∇sh (s
∗) = 0

Complete minimization with respect to f gives us -

h (W ∗P ,WN , s) ≤ h (WP ,WN , s) + 〈∇WP
h (WP ,WN , s),W

∗
P −WP 〉+

β

2
‖W ∗P −WP ‖2F

5



Since W ∗P =WP − λ, where λ is a matrix.

h (W ∗P ,WN , s) ≤ minλ
[
h (WP ,WN , s) + 〈∇WP

h (WP ,WN , s), λ〉+
β

2
‖λ‖2F

]
h (W ∗P ,WN , s) ≤ h (WP ,WN , s)−

1

2β
‖∇WP

h (WP ,WN , s)‖2F

Note that this analysis is similar to that done for coordinate descent.

We obtain a similar equation after optimizing for g -

h (W ∗P ,W
∗
N , s) ≤ h (W ∗P ,WN , s)−

1

2β
‖∇WN

h (W ∗P ,WN , s)‖2F

=⇒ h (W ∗P ,W
∗
N , s) ≤ h (WP ,WN , s)−

1

2β
‖∇WP

h (WP ,WN , s)‖2F −
1

2β
‖∇WN

h (W ∗P ,WN , s)‖2F

If we run PGD for sparse recovery until convergence then,

=⇒ h (W ∗P ,W
∗
N , s

∗) ≤ h (WP ,WN , s)−
1

2β
‖∇WP

h (WP ,WN , s)‖2F−
1

2β
‖∇WN

h (W ∗P ,WN , s)‖2F−
α

2
‖s∗ − s‖22

(By α-RSC) Thus, there is decrease in the objective function value in each iteration.

5 Experiments

We encountered certain errors while implementing the algorithm because of problems with Xavier initialization due
to the ReLU function. The update equations due to renormalization of each hidden layer output made the gradients for
backpropagation difficult to compute. Due to paucity of time, we were not able to implement this algorithm for other
activation functions like sigmoid or Leaky ReLU.

6 Future Works

1. Saddle Point : Although this technique won’t get stuck , it can still land up at a saddle point since the decrease
is proportional to the norm of gradient. For this, we need to further investigate the nature of the problem and
add constraints.

2. Robustness: Making the algorithm robust can now be broken down into making each subproblem robust and
then ensuring that each iteration of the AltOpt is also robust. The latter should be the more difficult task.
Coming up with

3. Ensuring β-RSS and α-RSC for the sparse recovery problem by putting conditions on the A matrix. Since
theAmatrix is recomputed at each iteration, we will have to come up with constraints on the data distribution
and the weight vectors to ensure these properties.

4. β−SS wrt the Frobenius norm is difficult to ensure for the ReLU function. Thus, we will have to use Fenchel
duality or Nesterov’s Theorem for approximate smoothness. Also, we can use a different smooth and convex
activation function for Method-2 since the only constraint for the algorithm to work is for the activation to be
convex.

5. Extension of the rule proposed for Method-1 to connect the vertices of the lattice for information-sharing.

7 Acknowledgments

We thank our mentor Dr. Purushottam Kar for his patient guidance during our project. We also thank our classmates
of CS777 for the insightful discussions both inside and outside the classroom.

6



References

[1] BHATIA, K., JAIN, P., AND KAR, P. Robust regression via hard thresholding. CoRR abs/1506.02428 (2015).

[2] CHEN, Y., CARAMANIS, C., AND MANNOR, S. Robust sparse regression under adversarial corruption. In Proceedings of the
30th International Conference on Machine Learning (Atlanta, Georgia, USA, 17–19 Jun 2013), S. Dasgupta and D. McAllester,
Eds., vol. 28 of Proceedings of Machine Learning Research, PMLR, pp. 774–782.

[3] JAIN, P., AND KAR, P. Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10, 3-4 (Dec. 2017),
142–336.

[4] LI, Y., AND YUAN, Y. Convergence analysis of two-layer neural networks with relu activation. CoRR abs/1705.09886 (2017).

7


	Introduction
	Related Works
	Problem Statement
	Notation

	The Proposed Approaches
	Approach 1 : ReLU Partitions
	Partitions

	Approach 2 : Alternating Optimization 
	Method
	Analysis


	Experiments
	Future Works
	Acknowledgments

